

Skripte zum Seminar

Mehrkomponentenspritzgießtechnik

Herausgeber Kunststoff-Zentrum in Leipzig gGmbH Erich-Zeigner-Allee 44 04229 Leipzig

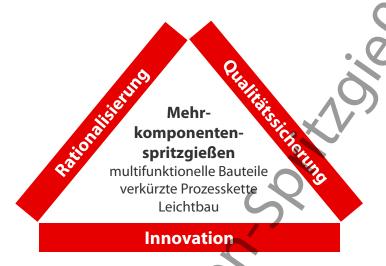
[®] Der Nachdruck, die Übernahme auf elektronische Medien, sowie Kopien des Textes und die Verwendung des Bildmaterials sind, auch auszugsweise, nur mit Genehmigung des Herausgebers gestattet

Inhaltsverzeichnis

Informationsblatt zur KUZ gGmbH

Arbeits- und Gesundheitsschutzbelehrung

Arbeitsschutz/Hygienemaßnahmen


Vorträge	2,	Seite
Grundlagen der Mehrkomponenten-Spr	ritzgießtechnik	8
Mehrkomponenten-Spritzgießen aus de	er Sicht des Werkstoffes	28
Maschinentechnik für das Mehrkompon	nenten-Spritzgießen	56
Werkzeugtechniken für das 2K-Spritzgie	:Ben	75
2K-Spritzaießfehler		102

Mehrkomponentenspritzgießen

> gewinnt zunehmende Bedeutung

- steigender Rationalisierung- und zunehmender Innovationsdruck
- Neuentwicklung von Materialien
- Weiterentwicklung der Werkzeug- und Maschinentechnologie

Quelle: Ehrenstein, G.

Anwendungen der Mehrkomponententechnik

Haptik

weich, griffig, rutschfest, ergonomisch

Farbe

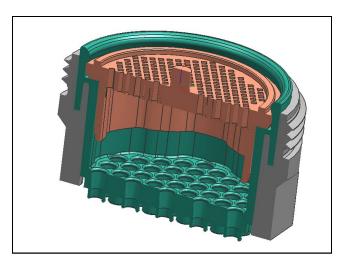
Dekoration, Designoptimierung, Sicherheit, Lebensdauer

Techn. Funktion

Funktionsintegration: Dichtung, Feder, Leiterbahnen

. . .

Festigkeit und Oberflächenqualität/Tribologie, Leichtbau, Gelenke, Rollen


Preis

Qualitätsanmutung, preiswertere Sekundärwerkstoffe, Zykluszeitsenkung, vereinfachte innerbetriebliche Logistik

Einsatzbeispiele Hart/weich - Kombinationen

In-Mould-Montage starrer Verbindungen

Christofori; Wilde: Ihre Anwendungen – unsere Lösungen, Forum Spritzgießen im KuZ am 24.11.04

Einsatzbeispiele Haut-Kern-Strukturen

Sandwich-/Coinjektions-/Intervalltechnik

- Funktionsintegration
 → Dämpfung, Isolierung,
 Haptik, Steifigkeit
 Designoptimierung
 → Class-A Oberfläche,
 Galvanisierbarkeit
- Kostenreduktion
 → Recyclat
 - → Recyclat Zykluszeitverkürzung

 ${\it Quelle: PTS Marketing, Playmobil, ENGEL, Ferromatik Milacron}$

Anordnung der Spritzeinheiten: Einflussfaktoren

Produkt

- Geometrie
- Jahresbedarf
- Komplexität ...

Formmassen

- Fließeigenschaften
- Thermische Beständigkeit
- Verträglichkeit
- Mechanische Eigenschaften ...

Kunde / Produktionsstandort

- Erfahrung
- bestehende Produktion

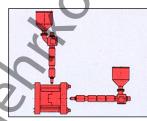
Werkzeug

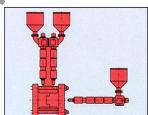
- Bauart (Umsetzen, Drehteller usw.)
- · Angusskonzept (Heiß-, Kaltkanal ...)
- Angussart und Angusslage
- Entformung
- Kühlung ...

Prozess

- Automation
- Nachfolgebehandlung
- · Reproduzierbarkeit / Qualität
- Zykluszeit
- Peripherie ...

Quelle:

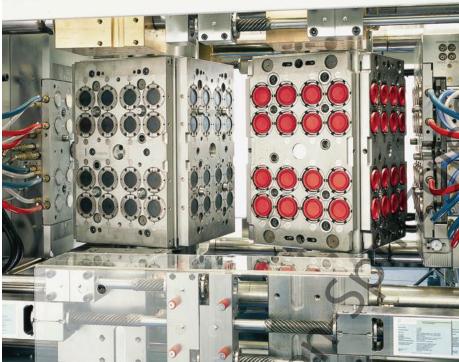

Spritzgießmaschine


www.kuz-leipzig.de

.kuz-leipzig.de

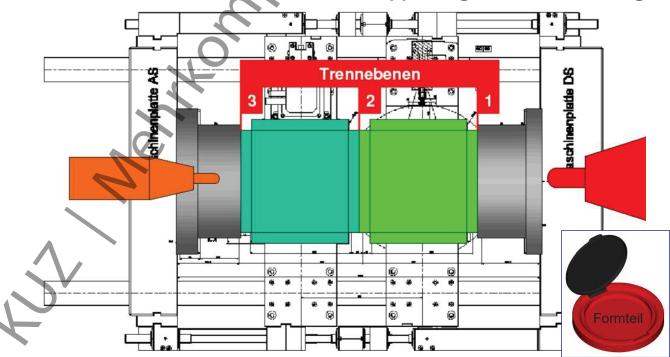
Vertikalaggregate

- + Flexibilität
- + Temperaturführung
- + Materialzuführung
- + Stabilität der Düsenplatte
- + Düsenanlagekraft
- + Platzbedarf / Stellfläche
- + Werkzeugkonzept
- Invest SGM
- Decken-/ Kranbahnhöhe
- Zugänglichkeit



Drehwerkzeuge – Würfeltechnik

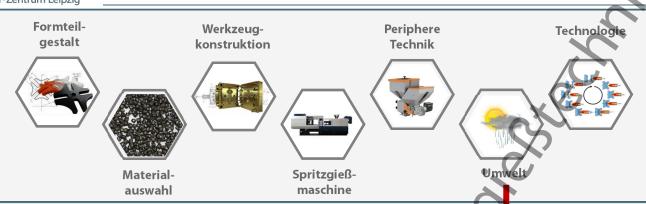
Doppeletagenwendewerkzeug



Werkzeugtechniken für das 2K-Spritzgießen

Drehwerkzeuge – Würfeltechnik

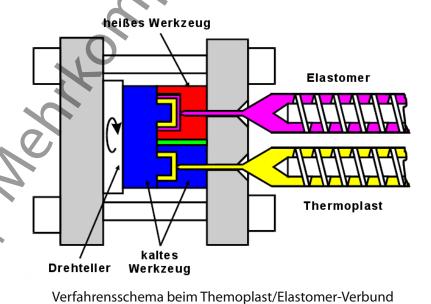
Doppeletagenwendewerkzeug



Ansicht von oben

Von der Produktidee bis zum Formteil

- Temperatur
- Luftfeuchte
- · Prüftechnische Einflüsse
- · Transportbedingungen
- · Lagerbedingungen
- · Anwendungsbedingungen

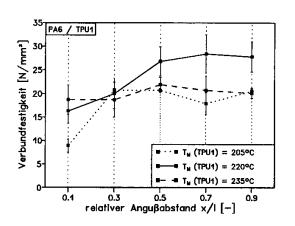

www.kuz-leipzig.de

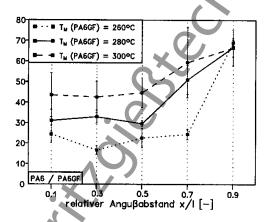
Know-how für Kunststoffe
MIT DER INDUSTRIE – für die Industrie

www.kuz-leipzig.de

Verarbeitungskompatibilität

Quelle: Schmachtenberg, E.: "Generelle Entwicklungstrends in der Kunststoffverarbeitung", Vortrag zur Schmöllner Anwendungstagung, 22. Nov. 2005


Know-how für Kunststoffe
MIT DER INDUSTRIE – für die Industrie

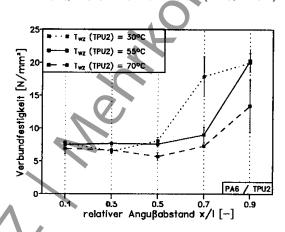

Verfahrenstechnische Aspekte

Hart/Weich-Kombination (PA6/TPU1)

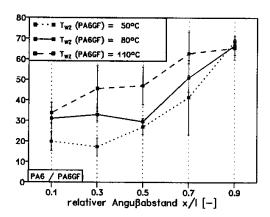
Verbundfestigkeit in Abhängigkeit der Massetemperatur der aufgespritzten Komponente und der Fließweglänge bei seitlicher Anspritzung (stumpfe Kontaktfläche)

Quelle: Kuhmann, K. in: Mehrkomponententechnik 2000. - S. 110

Know-how für Kunststoffe


MIT DER INDUSTRIE – für die Industrie

www.kuz-leipzig.de


Kunststoff-Zentrum Leipzig

Verfahrenstechnische Aspekte

Hart/Weich-Kombination (PA6/TPU2)

Hart/Hart-Kombination (PA6/PA6-GF)

Verbundfestigkeit in Abhängigkeit der Werkzeugtemperatur der aufgespritzten Komponente und der Fließweglänge bei seitlicher Anspritzung (stumpfe Kontaktfläche)

Quelle: Kuhmann, K. in: Mehrkomponententechnik 2000. - S. 110

Know-how für Kunststoffe

MIT DER INDUSTRIE - für die Industrie