

Skripte zum Seminar

Spritzgießen kompakt in Theorie und Praxis

· ·

Herausgeber Kunststoff-Zentrum in Leipzig gGmbH Erich-Zeigner-Allee 44 04229 Leipzig

^o Der Nachdruck, die Übernahme auf elektronische Medien, sowie Kopien des Textes und die Verwendung des Bildmaterials sind, auch auszugsweise, nur mit Genehmigung des Herausgebers gestattet

Inhaltsverzeichnis

Informationsblatt zur KUZ gGmbH

Arbeits- und Gesundheitsschutzbelehrung

Arbeitsschutz/Hygienemaßnahmen

Vorträge	Seite
Erweiterte Kunststoffe für Spritzgießer	6
Aufbau von Spritzgießmaschinen	38
Verarbeitungsrelevante Prüfmethoden und	
ausgewählte Kunststofftypen	
Verfahrensablauf und Fehler beim Spritzgießen	100
Werkzeugwechsel (Maschinentraining)	160
Werkzeuge für das Spritzgießen mit den Schwerpu	nkten
Aungussgestaltung.und Entformung	170
Werkzeugtemperierung	228
Periphere Technik und Recycling	256
Berechnung technologisch wichtiger Größen	302

ÜBERBLICK

"Die Zukunft im Blick" – Ihr Entwicklungspartner für die Kunststoff verarbeitende und anwendende Industrie.

Die Kunststoff-Zentrum in Leipzig gGmbH (KUZ) bietet als kompetenter Technologiepartner praxisorientierte Lösungen rund um den Kunststoff.

Die Schwerpunkte umfassen die Thematiken Technologie- und Innovationsforschung, Leichtbau, Miniaturisierung und Digitalisierung/KI. Das Institut arbeitet disziplinübergreifend an der Optimierung ganzheitlicher Kunststoffprozesse und -produkte hinsichtlich ihrer Nachhaltigkeit.

Kunststoffverarbeitung

Spritzgießen

- Analyse und Optimierung von Verarbeitungsverfahren einschließlich Spritzgießsimulation
- Mehrkomponententechnik (2K, Sandwich-Spritzguss)
- Verfahrenskombination Thermoplast-PUR
- Leichtbau durch thermoplastisches Schaumspritzgießen
- Spritzgießmaschinenkalibrierung
- Online-Fehlerkatalog

Polyurethanverarbeitung

- Produkt- und Technologieentwicklung
- Materialerprobung und Rezepturoptimierung, Musterfertigung
- Prozessanalyse und -optimierung
- Fehleranalyse und Gutachten
- Digitalisierung
- Prototyping

Mikrokunststofftechnik

- MiKA Applikationszentrum für Mikrokunststofftechnologien
- Mikrospritzgießen einschließlich Reinraumtechnik
- Sonderverfahren (2K, Einleger, Spritzprägen)
- Spezielle Materialien (LSR, PIM, bioresorbierbar, transparent)
- Ultraschall-Trennung optischer Bauteile
- Formteil-, Werkzeug- und Technologieentwicklung

Verbindungstechnik

- Beratung zur Technologieauswahl
- Optimierung von Serienschweißprozessen
- Entwicklung von Schweißtechnologien
- Schweißgerechte Konstruktion
- Sondermaschinenbau
- Beratung und Qualifizierung handwerkliches Schweißen

Als industrienahe Forschungseinrichtung befasst sich das KUZ mit Entwicklungen, die schnell in der Praxis wirksam werden

Werkzeugtechnik

- Formteil- und Werkzeugkonstruktion
- Simulations- und Festigkeitsrechnungen zur Auslegung von Formteilen und Werkzeugen
- Entwicklung ultraschall-basierter Auswerfersysteme
- Systematische Abmusterung von Werkzeugen

Werkstoffentwicklung

- Beratung zur Werkstoffauswahl
- Maßgeschneiderte Compounds für spezielle Anforderungen
- Materialeignungstests
- Entwicklung von Werkstoffkombinationen aus Kunststoffen und nachwachsenden Rohstoffen

Kunststoff-Prüfung

- Akkreditiertes Prüflabor nach DIN EN ISO/IEC 17025: 2018
- Entwicklungsbegleitende Werkstoff und Bauteilprüfung
- Erstmusterprüfungen
- Schadensanalysen
- Analytik und Strukturaufklärung (u. a. Computertomografie)
- Umweltsimulation und Klimaprüfung

Weiterbildung

- Technologie-Seminare und Maschinentraining
- Kunststoffkunde und -prüfung
- Firmenindividuelle Schulungen
- Lehrgänge und Prüfungen nach DVS®-Richtlinien

Kontakt

Kunststoff-Zentrum in Leipzig gGmbH Erich-Zeigner-Allee 44, 04229 Leipzig Postfach 31 07 32, 04211 Leipzig

49 (0)341 4941-500

49 (0)341 4941-555 info@kuz-leipzig.de

Ansprechpartner

Geschäftsführer Dr. Thomas Wolff

+49 (0)341 4941-501

wolff@kuz-leipzig.de

Technologietransfer / Vertrieb Silvio Esche

+49 (0)341 4941-521

esche@kuz-leipzig.de

Verarbeitungstechnik

Petra Krajewsky

+49 (0)341 4941-600 krajewsky@kuz-leipzig.de

Werkzeug- u. Verbindungstechnik / MiKA Jörg Michaelis

+49 (0)341 4941-700

michaelis@kuz-leipzig.de

V/S/PERSZERT

Weiterbildung

Iljana Eckardt

+49 (0)341 4941-515 eckardt@kuz-leipzig.de

Kunststoff-Prüfung

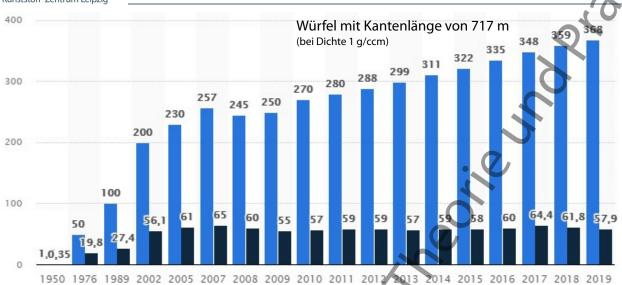
Dr. Christian Schurig

+49 (0)341 4941-800 schurig@kuz-leipzig.de

Vortrag

Erweiterte Kunststoffe für Spritzgießer

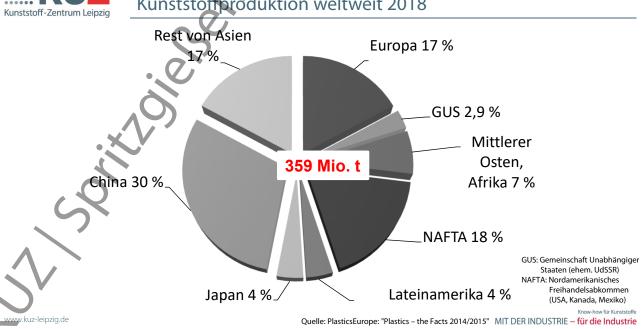
Referent:


Dr. Peter Bloß wiss. Mitarbeiter im Bereich Kunststoffprüfung Kunststoff-Zentrum in Leipzig gGmbH Erich-Zeigner-Allee 44 04229Leipzig

bloss@kuz-leipzig.de

1 Wirtschaftsdaten und Einsatzgebiete

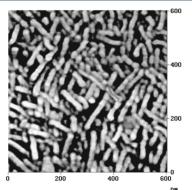
Kunststofferzeugung in Mio. t, weltweit und Europa

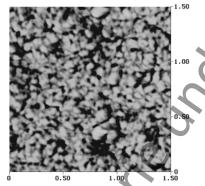

www.kuz-leipzig.de

Quelle: Statista 2021 MIT DER INDUSTRIE – für die Industrie

1 Wirtschaftsdaten und Einsatzgebiete

Kunststoffproduktion weltweit 2018




9

5 Eigenschaften thermoplastischer Kunststoffe

Einfluss der Abkühlgeschwindigkeit auf Kristallinitätsgrad

Abkühlung:

- Kristallinitätsgrad
- Kristalle
- Kristallbaufehler
- → Festigkeit und Steifigkeit
- → Zähigkeit
- → Lösungsmittelbeständigkeit

langsam

hoch groß

wenige hoch

niedrig

hoch

schnell

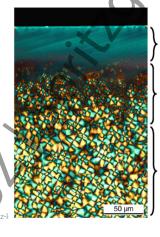
niedrig klein

viele (Nachkristallisation, Verzug)

niedrig hoch

gering

Know-how für Kunststoffe
MIT DER INDUSTRIE – für die Industrie

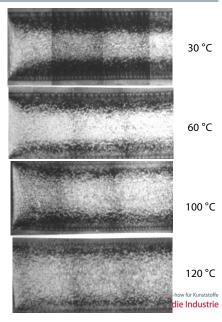

www.kuz-leipzig.de

5 Eigenschaften thermoplastischer Kunststoffe

Einfluss der Abkühlgeschwindigkeit auf Kristallinitätsgrad (2/2)

Mit zunehmender Werkzeugwandtemperatur

- wird Temperaturgradient zwischen Werkzeug und Formmasse geringer,
- wird Kühlzeit länger und
- wächst die mittlere Zone (Kristallitgefüge)



Randschicht (optisch amorph)

randnahe Schicht (feinsphärolithisches Gefüge)

Kernschicht (grobsphärolithisches Gefüge)

30

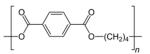
SGM-Technik » Gestell

Aufgaben des Gestells

- ist der Montageort für alle Baugruppen, die für die Funktion einer Spritzgießmaschine erforderlich sind
- muss statische und dynamische Belastungen aufnehmen
- bei holmlosen Maschinen: Aufnahme der Zuhaltekraft
- die Abstützung ggü. dem Hallenboden erfolgt über höhenverstellbare Schwingelemente
- werden als Stahlschweiß- oder Gusskonstruktion ausgeführt
- bei großen Maschinen besteht Gestell aus mehreren Teilen
- solide Aufstellung hat wesentlichen Einfluss auf die Funktion und Lebensdauer der mechanisch beanspruchten Bauteile der Maschine

www.kuz-leipzig.de

SGM-Technik » Maschinenanordnung



47

3 Ausgewählte Kunststofftypen

Polybutylenterephthalat (PBT)

Eigenschaften

- hohe Steifigkeit und Festigkeit (geringer als bei PET)
- gutes Gleit- und Verschleißverhalten
- sehr gute Formbeständigkeit in der Wärme
- geringe Wasseraufnahme
- gute Widerstandsfähigkeit gegen viele Chemikalien
- ausgezeichnete Witterungsbeständigkeit
- hervorragendes Wärmealterungsverhalten
- sehr gutes Fließverhalten
- für Kontakt mit Lebensmitteln zugelassen
- verschweißbar und klebbar

Quelle: www konstruktionspraxis vogel de

Ouelle: https:// plastics-rubber. basf.com

Quelle: www.kunststoffe.de

Quelle: https://plasticker.de

Anwendung

- Fahrzeugbau: Funktionsteile, Halterungen, Verbindungs-, Schiebedachelemente
- E/E, Telekommunikation: Steckverbinder, Schaltersysteme, Ummantelungen von Lichtwellenleitern
 Feinwerktechnik, Maschinenbau: Funktionsteile für Drucker, Kopiergeräte,
- Kameras und optischen Geräte, Gehäuse
- Haushaltgeräte: Gehäuse, Herdschaltknöpfe und -griffe, Hygienebereich (Zahnbürstenborsten, Zahncremetubenhütchen)

3 Ausgewählte Kunststofftypen

Polyoxymethylen (POM)

= teilkristalliner Thermoplas

→ lineare Struktur, ohne Verzweigungen

Eigenschaften

- Dichte: 1,39 bis 1,42 g/cm³
- zählt zu den festesten und st thermoplastischen Kunststoffen
- hoher Kristallinitätsgrad (bis 80 %)
- hohe Härte und Steifigkeit
- hohe Zähigkeit bis 40 °C
- hohe Wärmeformbeständigkeit
- hohe Maßbeständigkeit
- hohe Beständigkeit gegenüber Lösungsmitteln
- günstige Gleit- und Reibungseigenschaften

Verarbeitung

- Vortrocknen 1 bis 2 h bei 100 bis 110 °C
- Schwindung bis 3 %
- bei Verarbeitung > 220 °C beginnt Zersetzung zu Methanal;
- auch bei Kontakt mit Cu → Masse kann mit hohem Druck herausspritzen
- Regeln bei Materialwechsel: Leerfahren, Reinigen,
 - T-Messung mit Zwischenprodukt; keine Reste von Cl-haltigen Materialien

97

Quelle: www.klaeger-plastikhartha.de

Quelle: http://reiloyusa.com/industry-

Quelle: www.marecoprototyping.de

Anwendungsgebiete

- Präzisionsteile wie Zahnräder, Hebel, Lager, Schrauben ...
- Schlagbeanspruchte Gehäuseteile
- Schnappverbindungen
- Filmscharniere
- Reißverschlüsse
- Quelle: www.assistent.eu Füllstandssensor in KFZ-Tanks
 - Kosmetikbehälter

Quelle: www.usinenouvelle.com MIT DER INDUSTRIE – für die Industrie

Einspritzgeschwindigkeit

- dünnwandige Teile, lange Fließwege
- Formteile mit Zusammenfließlinien
- hohe Anforderungen an die Oberflächenqualität
- kurze Zykluszeiten

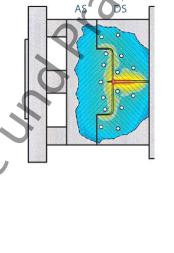
Know-how für Kunststoffe
MIT DER INDUSTRIE – für die Industrie

www.kuz-leipzig.de

Einspritzgeschwindigkeit

- thermisch empfindliche Formmassen (wie PVC-hart)
- enge Anschnitte, große Querschnittsänderungen
- dickwandige Formteile

Vermeidung von Dieseleffekt am Fließwegende



Know-how für Kunststoffe
MIT DER INDUSTRIE – für die Industrie

Werkzeugtemperatur und Maßhaltigkeit

Beispiel: Verzug des Modellteils S&V aus PP (3-fach verstärkte Darstellung) DS: 40 °C AS: 40 °C DS: 20 °C AS: 40 °C

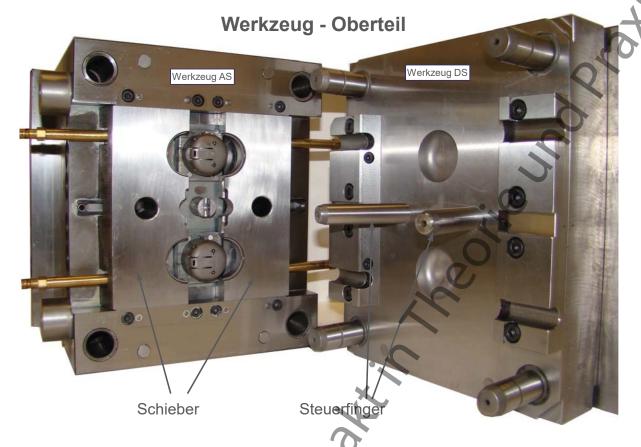
 $\label{eq:mow-how-fur-Kunststoffe} \mbox{MIT DER INDUSTRIE} - \frac{\mbox{fur Kunststoffe}}{\mbox{fur Industrie}}$

Definition von Verzug und Schwindung

Verzug

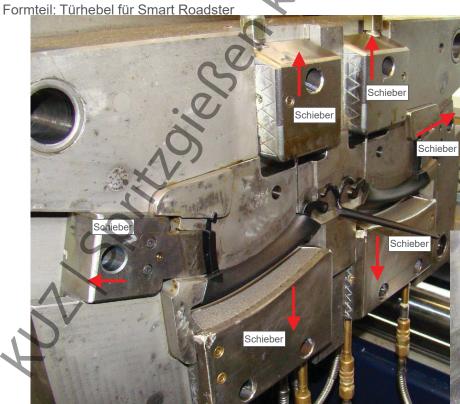
bezeichnet die Gestaltänderungen des Bauteils (z.B. Verwölbungen, Winkelverzug usw.) Verzug resultiert aus

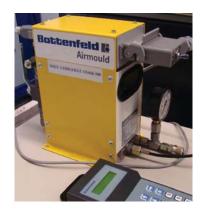
- über dem Formteilquerschnitt inhomogener Schwindung
- lokalen Schwindungsunterschieden im Bauteil
- Schwindungsanisotropie



bezeichnet die Differenz zwischen den Abmessungen des Formteiles und des Formnestes. Ursache für die Schwindung ist die Volumenkontraktion des erkaltenden Werkstoffs.

Know-how für Kunststoffe
MIT DER INDUSTRIE – für die Industrie




Beispiel Schieberwerkzeug: Bronchitissensor

GID-Werkzeug mit Schiebertechnik

Werkzeug AS

KUZ Berechnung der Kühlzeit

Formteil aus ABS

 $T_{m1} = 230^{\circ}C$ [220-260°C]

 $T_{m1} = 250^{\circ}C$ [220-260°C] $T_{m2} = 250^{\circ}C$ [220-260°C] $T_{w} = 65^{\circ}C$ [50-80°C] $T_{e} = 100^{\circ}C$ $a_{eff} = 0.08 \text{ mm}^{2}/\text{s}$

= 2 mm

$$\Delta T_{\rm m} = 20^{\circ} C$$

$$\Delta t_{K} = 0.58 s$$

$$t_{K1} = \frac{s^2}{\pi^2 \cdot a_{eff}} \ln \left[\frac{8}{\pi^2} \left(\frac{T_{m1} - T_w}{T_e - T_w} \right) \right] = \frac{(2 \text{ mm})^2}{\pi^2 \cdot 0.08 \text{ mm}^2/\text{s}} \ln \left[\frac{8}{\pi^2} \left(\frac{230 \text{°C} \cdot 65 \text{°C}}{100 \text{°C} - 65 \text{°C}} \right) \right] = 6.79 \text{ s}$$

$$t_{\text{K2}} = \frac{s^2}{\pi^2 \cdot a_{\text{eff}}} \ln \left[\frac{8}{\pi^2} \left(\frac{T_{\text{m2}} - T_{\text{w}}}{T_{\text{e}} - T_{\text{w}}} \right) \right] = \frac{(2 \, \text{mm})^2}{\pi^2 \cdot 0.08 \, \text{mm}^2/\text{s}} \ln \left[\frac{8}{\pi^2} \left(\frac{250 \, ^{\circ}\text{C} - 65 \, ^{\circ}\text{C}}{100 \, ^{\circ}\text{C} - 65 \, ^{\circ}\text{C}} \right) \right] = 7.37 \, \text{s}$$

Berechnung der Kühlzeit

Formteil aus ABS

$$T_{\rm m} = 240^{\circ} \text{C} [220-260^{\circ} \text{C}]$$

$$T_{w1} = 55^{\circ}C$$
 [50-80°C]

Formtell aus ABS
$$T_{m} = 240^{\circ}\text{C} \quad [220\text{-}260^{\circ}\text{C}]$$

$$T_{w1} = 55^{\circ}\text{C} \quad [50\text{-}80^{\circ}\text{C}]$$

$$T_{w2} = 75^{\circ}\text{C} \quad [50\text{-}80^{\circ}\text{C}]$$

$$T_{e} = 100^{\circ}\text{C}$$

$$a_{eff} = 0.08 \text{ mm}^{2}/\text{s}$$

$$T_e = 100^{\circ}C$$

$$a_{eff} = 0.08 \text{ mm}^2/\text{s}$$

$$\Delta t_{K} = 2.4 \text{ s}$$

$$t_{\text{K1}} = \frac{s^2}{\pi^2 \cdot a_{\text{eff}}} \ln \left[\frac{8}{\pi^2} \left(\frac{T_{\text{m}} - T_{\text{w1}}}{T_{\text{e}} - T_{\text{w1}}} \right) \right] = \frac{(2 \text{ mm})^2}{\pi^2 \cdot 0.08 \text{ mm}^2/\text{s}} \ln \left[\frac{8}{\pi^2} \left(\frac{240 \text{ °C} - 55 \text{ °C}}{100 \text{ °C} - 55 \text{ °C}} \right) \right] = 6.09 \text{ s}$$

$$t_{\text{K2}} = \frac{\text{s}^2}{\pi^2 \cdot \text{a}_{\text{eff}}} \ln \left[\frac{8}{\pi^2} \left(\frac{\text{T}_{\text{m}} - \text{T}_{\text{w2}}}{\text{T}_{\text{e}} - \text{T}_{\text{w2}}} \right) \right] = \frac{(2 \text{ mm})^2}{\pi^2 \cdot 0,08 \text{ mm}^2/\text{s}} \ln \left[\frac{8}{\pi^2} \left(\frac{240 \text{°C} - 75 \text{°C}}{100 \text{°C} - 75 \text{°C}} \right) \right] = 8,49 \text{ s}$$