

Skripte zum Seminar[©]

Polyurethantechnik

Veranstalter:

Kunststoff-Zentrum in Leipzig gGmbH

unter Beteiligung der Firmen:

KraussMaffei Technologies GmbH, München

Huntsman Polyurethanes (Germany) GmbH, Deggendorf

mit Gastreferenten der Firmen:

ACMOS Chemie KG, Bremen

Format Meßtechnik GmbH, Karlsruhe

Hans-Jürgen Keil Anlagenbau GmbH & Co. KG,

Bohmte-Hunteburg

Herausgeber Kunststoff-Zentrum in Leipzig gGmbH Erich-Zeigner-Allee 44 04229 Leipzig

[©] Der Nachdruck, die Übernahme auf elektronische Medien, sowie Kopien des Textes und die Verwendung des Bildmaterials sind, auch auszugsweise, nur mit Genehmigung des Herausgebers gestattet

Inhaltsverzeichnis

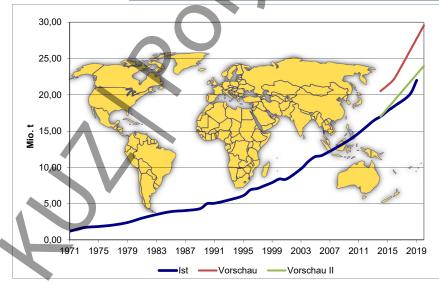
Informationsblatt zur KUZ gGmbH

Arbeits- und Gesundheitsschutzbelehrung

Arbeitsschutz / Hygienemaßnahmen

Teilnehmerverzeichnis

Vorträge	Seite
Einteilung der Polyurethane und Anwendungsbeispiele	
Übersicht über die Chemie der Polyurethane	51
Eigenschaften der PUR-Rohstoffe	75
Sicherheitstechnische Aspekte beim Umgang mit Roh- und Hilfsstoffen, Umwelt- und Gesundheitsschutz	99
Zusatzstoffe für die PUR-Rohstoffe sowie alternative Treibmittel	163
Rohstofflogistik	173
Zusammenführen von Material und Maschine im Prozess der Verarbeitung	199
Trennmittel als notwendige Hilfsmittel zur Herstellung von PUR-Formteilen und Reinigung der Werkzeuge von Trennmittelresten	231
Übersicht Maschinentechnik: Nassteil	277
Übersicht Anlagentechnik: Trockenteil	327
Unterweisung im chemischen Labor	459
Vorstellung eines Schaumqualifizierungssystems	461
Werkzeuge für die Herstellung von PUR-Formteilen	463
Verarbeitung faserförmiger Füllstoffe in Polyurethanen	497
Leichtbau durch Faserverbund	533
Hochwertige Oberflächen	551
Recycling von Polyurethanen	567
Highlights der letzten Zeit	609



Kunststoffverbrauch 2018 (EU 28 + N und Ch) (nach Kunststofftypen)

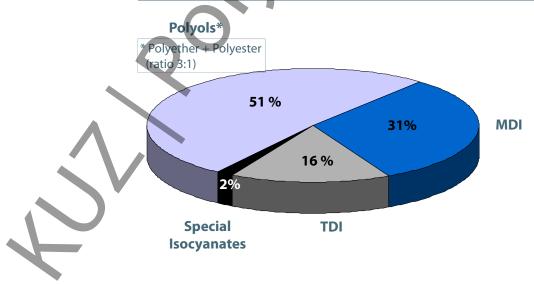
PUR-Weltverbrauch von 1970 - 2016

Aktualisiert: 2010: ca. 14 Mio. t Aktualisiert: 2013: ca. 16,4 Mio. t* Aktualisiert: 2015: ca. 17,5 Mio. t** Aktualisiert: 2016: ca. 18,5 Mio. t Aktualisiert: 2018: ca. 20,0 Mio. t Aktualisiert: 2019: ca. 22,0 Mio. t***

Quelle: PU-Magazin 02/2016; S. 76; (*)...PU-Magazin 04/2018, Jahrgang 18, S. 209
*...K-Zeitung, 20. Februar 2015, Ausgabe 4, S.14; **...Kunststoffe 10/2016, S. 54 ff (Covestro), ***...Kunststoffe 10/2020, S.74 ff.

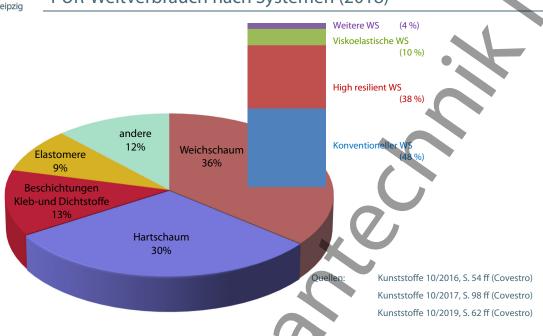
Anteil PUR am Gesamtkunststoffverbrauch

Anteil PUR am Gesamtkunststoffverbrauch

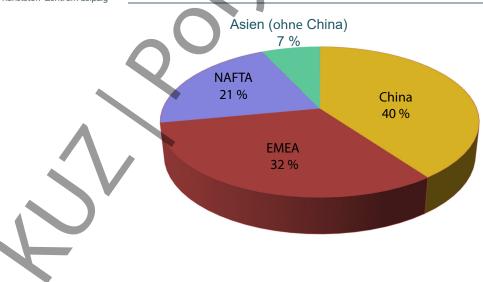

Jahr	Welt	Europa	Deutschland
2013	5-6 %	7 %	> 10 %
- ca. 40 000 Beschäftigte - 5,1 Mrd.€ Umsatz	} in D (2	2013; PUR)	
- ca. 126 000 Beschäftigte - 1100 Unternehmen		2021; PUR + Schaumstoffe) (Quelle FSK-MV;2022)
- 9 Mrd.€ Umsatz - 1,75 Mio. t PUR + Schau	mstoffe		
ca. 338 000 Beschäftigte ca. 3000 Unternehmen		2019; Kunststoffe allgemein	

Quelle: FSK (http://www.fsk-vsv.de/werkstoffe-maerkte/marktdaten/(03.02.2007), Plasticker-News vom 09.12.2013
Branchenanalyse kunststoffverarbeitende Industrie 2020; Nummer 186; Mai 2020 (Jürgen Dispan und Laura Mendler)

66 Mrd.€ Umsatz


PUR-Weltverbrauch Rohmaterial (in %)

Quellen: Bayer MaterialScience



PUR-Weltverbrauch nach Regionen (2016)

Quelle: Kunststoffe 10/2017, S. 98 ff (Covestro)

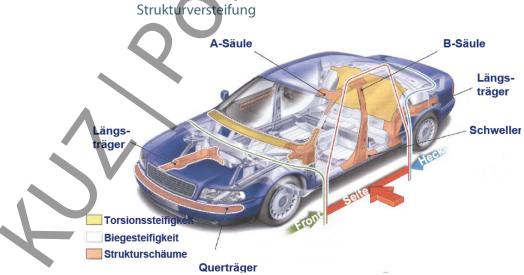
Halbhartschaumstoffe

Möglichkeiten des Insassen- und Passantenschutzes:

- Versteifung
- Energieabsorption

- Träger, Schweller, Säulen
- Teil- oder Komplettausschäumung

Innenraum


Crash-Polster

- Seitenpolster (Becken/Thorax)
- Kniepolster
- Kopfpolster

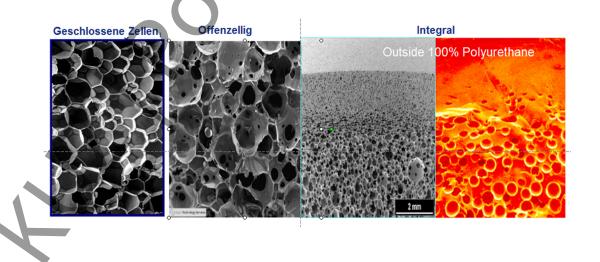
Quelle: Bayer Material Science

Halbhartschaumstoffe

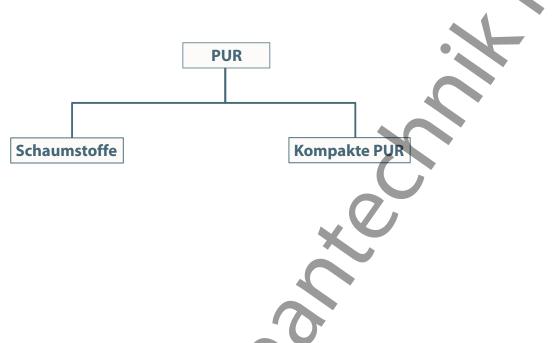
Quelle: Bayer Material Science

Anwendungen für flexible Integralschaumstoffe

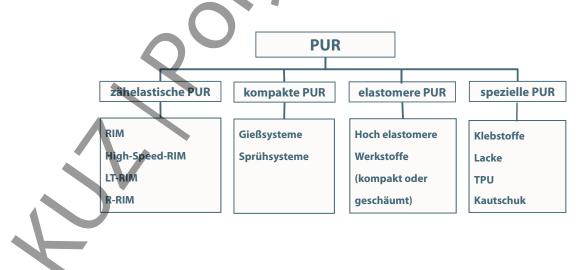
Flexibler PUR-Integralschaum



Quellen: BASF Polyurethanes, Bayer Material Science

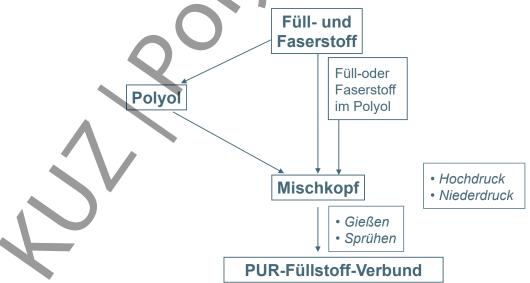


Zellstrukturen des Polyurethan



Zustandsformen der Polyurethane

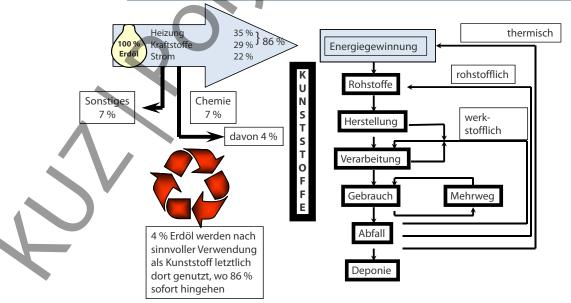
Zustandsformen der kompakten Polyurethane


Welche Möglichkeiten der Verarbeitung gibt es?

- im Polyol eingemischt
- als 3. Strang mit Polyol angebatcht
- als Feststoff direkt
- im Isocyanat eingemischt
- Weitere?
- Wie erfolgt die Verarbeitung?
 - Hochdruck
 - Niederdruck
- Wie erfolgt die Verarbeitung?
 - Gießen
 - Sprühen

- Partikel bis max. 1 mm
- Partikel bis ca. 3 mm
- rieselfähige Partikel
- nein, nicht üblich

Einarbeitungsvarianten der Füll- und Faserstoffe



Recycling von Polyurethanen - Einführung

- Müllberge sind zu einem Problem von Industriestaaten geworden.
- Vermeidung und Verminderung ist oberstes Gebot, vorhandene Ressourcen schonen, Verantwortung für Kinder und Enkel.
- Bei 5-6 % PUR am Gesamtkunststoffaufkommen fallen mengenmäßig ähnliche Quoten an Jedoch ist das Volumen ca. 20 x höher.
- Noch vor Jahren galten PUR infolge ihres duromeren Charakters als schwer oder nicht recycelfähig.
- Heute ist PUR- Recycling technisch gelöst jedoch Recycling mit Augenmaß!
- Energieeinsatz darf nicht höher sein als der resultierende Nutzen.
- Auf Grund der großen Vielfalt der Eigenschaften gibt es nicht eine Lösung sondern mehrere Verwertungsmöglichkeiten.
- Markwirtschaftliche Gesichtspunkte beachten.
- Stoffliche und energetische Recyclingverfahren sollten als gleichwertig betrachtet werden.

Recycling - Kreisläufe und Entsorgung

Was ist Polyurethan?

Polyol + Additive (Polyether – bzw. Polyesterpolyole) (Aktivatoren, Stabilisatoren, Vernetzer, Kettenverlängerer, Treibmittel, Flammschutzmittel etc.)

Isocyanat (MDI, TDI, PMDI etc.)

Mischen und Reagieren

Polyurethan

Es gibt nicht das Polyurethan, sondern nur die Polyurethane.

Notwendigkeit des sortenreinen Recycling

Unterschiede der einzelnen Polyurethane in der

- den Ausgangsstoffen
- der Chemischen Struktur
- der Vernetzung (Vernetzungsgrad, Vernetzungsdichte)
- der Dichte
- und folglich: den
 - Eigenschaften
 - ,

Sortenreines Recycling